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Riemann tensor 
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Abstract. The results of a complete enumeration of the scalars formed from the Riemann 
tensor by covariant differentiation. multiplication and contraction of order 14 in the 
derivatives of the metric are presented. The corresponding enumeration for the numbers 
of scalars constructed solely from the Weyl tensor is also given. 

1. Introduction 

Fulling er al 113 (referred to herein as I )  have recently discussed the enumeration of 
the scaiars formed from the Riemann tensor (of a torsioniess, metric-compatibie 
connection) by covariant differentiation, multiplication and contraction. They have 
determined the number of independent homogeneous scalar monomials of each order 
and degree up  to order 12 in derivatives of the metric. In this paper we give the 
corresponding enumeration for order 14. The technical background has been given 
in I, and references therein, and will not be repeated here. 

While it is hardly practical, possibly not interesting, to explicitly construct the 
scalars of high order there is some interest to know how the number of scalars grows 
with increasing order with the hope that eventually one may develop asymptotic theories 
with the given results supplying test points in much in way that MacMahnn's enumer- 
ation of p ( n ) ,  the number of ordered partitions of the integer n, to n = 200 played in 
the development of Hardy and Ramanujan's asymptotic form [2] that for sufficiently 
large n gave an exact result. The total number of Riemann scalars for order 2n grows 
faster than n + I! and rapidly outgrows the possibility of explicit computer enumeration. 
The step from the twelfth order reported in I to fourteenth order is substantial and 
required a number of special considerations that will be briefly reviewed before 
presenting the final results. 

The key tool used in making the calculations has been the mathematical operation 
known as plethysm [2-61 and the properties of symmetric functions [7]. In general we 
foiiow the definitive notation of Xacdonaid i i j  for symmetric functions, panitions 
etc. and the notation specified in I. The practical calculations were all performed using 
the interactive programme S C H U R ~ .  

2. Enumeration of Riemann scalars 

As shown in I the master object for enumerating the Riemann scalars is 
m 

%?= (rZ{22}+r3{32}+r4{42}+ ... )" - 
m=, 

0305-4470/92/225999+05%07.50 0 1992 IOP Publishing Ltd 

(2. 1 ) 
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There is a Riemann scalar for every S-function {A]  arising in the evaluation of (2.1) 
whose partition label A A,, A 2 , .  . . , A i , .  . . , A, involves only euen parts. The evaluation 
of the Riemann scalars of order n involves the resolution of all plethysms and outer 
S-function products associated with f "  where n is necessarily even. This is accomplished 
in the following algorithmic manner: 

(1) List all the ordered partitions of  n having no part equal to unity, 
(2) For each partition (A\,", . . . , A ? ,  . . . ,2", I"',), with mi being the number of times 

the part Ai  is repeated, replace each A? by {A,,2}@{mj) noting that {&,2]@{1}= 
{Ai,2). 

(3) For each partition replacement evaluate the plethysms as lists of S-functions and 
then combine the lists under outer S-function multiplication using the Littlewood- 
Richardson rule. 
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(4) Remove from the resulting lists all partitions involving any odd parts. 
( 5 )  In arbitrarily high dimensions there is one independent Riemann scalar of order 

n for each surviving S-function. 
(6) The minimal dimension capable of supporting a given independent Riemann scalar 

associated with an S-function indexed by a p part partition ( A )  is p. Thus for order 
14 step (1) leads to the 34 partitions: 

(141, (122), (11 3). (104). (102')> (95)? (9321, (86), (842): (8321, (U3!, (72!: 
(752), (743), (732'), (6'2), (653), (642), (6422), (6322), (624), (524),  (5222), 
(5432), (533), (532'), (432), (42 32), (4223), (43222), (42'), (342), (3'Z4), (2'). 

Step (2) involves, for example, the replacement of the partition (43222) by 
{42]. ({32]@{2)) .({2'}0{2}) while step (3) involves explicit evaluationofthe plethysms 
and outer S-function multiplications to yield a total of 674713 S-functions. Step (5 )  
reduces this list to 22 907 S-functions and hence we may conclude that there are 22 907 
independent Riemann scalars associated with the partition (432 22). The partitions give 
a convenient way of classifying the multitudinous Riemann scalars. Among the 22 907 
scalars there are 9273 involving S-functions indexed by partitions having five parts 
and hence that set of 9273 scalars can only exist within a minimal dimension of five 
and higher. The complete set of results is given in table 1. The table presents in the 

numerical column headings give the minimal dimensions at and above which the scalars 
are independent. 

The main difficulty in establishing the table was the evaluation of the terms in the 
plethysm {22)0{7). This was done by first noting that 

(2.2) 

f-^t .,ed:-ml ,,,.I ..__ the ,,Im1- /..- -..A:&:-..\ C--- ...h:-h *La - - - I n - -  " - ~  ,40-:..-,4 T1.a 
Ll'DL "G, l , t ,P ,  cu,u,,,,, Ulci c,a_J> (U1 p a L L 1 U u L 1 ,  l l W l l l  W111b11 U l c i  JbPlP11 a1rj U C l l l G U .  Lllci 

(2.3) 

where K,, is the Kostka matrix that converts the S-function {A} into a sum of monomials 
m, indexed by the partitions p 171. The index p . ( n - r )  is to be interpreted as 
multiplying each part of the partition p by the integer (n - r). Equation (2.3) is, like 
most other algorithms for evaluting plethysms, recursive. The monomials in (2.3) were 
multiplied by the S-functions to yield lists of S-functions via Gordan's formula as 
outlined recently by Carr6 [a]. Like all other techniques for evaluating plethysms, there 
is considerable overcounting making memory issues of significance. Memory issues 
for the particular case of {22]0{7) were addressed by removing partitions having odd 
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Table 1. The wunt of Riemann S C I ~ A  for order 14. 

6001 

Class 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 

I 14 
4 I2 2 1 2  1 
5 113 1 3  I 

10 IO 4 2 6  2 
23 1022 1 7 LO 4 1 
I 1  95 2 7  2 
60 932 1 19 29 IO 1 
16 86 3 IO 3 

I 1 1  842 2 34 54 19 2 
89 83‘ 2 27 43 I5 2 

136 82’ 1 15 50 47 18 
14 7’ 3 8  3 

141 752 2 4 4  70 23 2 
246 743 3 73 126 41 3 

732‘ 1 60 278 270 87 13 I - _ _ - - -  710 
6’ 2 3 32 53 18 3 - - - - - - - - 109 

326 653 4 94 169 55 4 
- - - _ - - _ _  242 64‘ 4 65 124 44 5 

642’ 2 99 482 489 162 25 2 - _ - - - -  1261 
I817 63‘2 2 129 694 724 235 31 2 - _ - _ - -  

62‘ 1 25 187 368 266 86 20 4 I - - - - 958 
271 52 4 4 72 141 49 5 
830 5’2’ 2 67 314 317 110 18 2 - _ - - _ -  

5 293 5432 3 328 1987 2186 705 81 3 - _ - - - -  
1423 26 2 - _ - _ - -  53’ 2 88 516 591 198 

532’ I 109 1282 3007 2180 651 106 13 1 - - - - 7350 
43 2 2 81 465 533 190 28 3 - _ - - - -  I302 

2x91 
4‘2’ 2 86 923 2118 1616 510 100 I4  2 - - - - 5371 
43’2’ 2 259 3646 9273 7 I42 2206 345 32 2 - - - - 22907 
42’ 1 26 384 1526 2058 I 1 7 1  360 81 18 4 1 - - 5630 
3‘ 2 1 71 955 2490 1996 636 104 IO 1 - - - - 6264 
3224 1 63 1261 5639 7915 4537 1341 260 44 7 1 - - 21069 
2’ I 7  80 343 709 621 328 105 36 IO 4 I 1 2246 

Totals 67 2186 15356 31406 26043 10702 2724 519 105 21 6 1 1 89137 

1 -  - - - - - - - - - - - 
- - - - - - - - - - 
- - - - - - - - - - 
- - - - - - - - - - 

- - - - - - - - 
- - - - - - - - - - 

- - - - - - - - 
I - - - - - - - - - 

- - - - - - - - 
- - - - - - - - 
4 1 - _ - _ - _  

- - - - - - - - - - 
- - - - - - - - 
- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

4‘3‘ 3 I70 1 MI 12uI 428 58 4 - _ - - _ -  

parts at the end of each monomial multiplication and thus only the even part partition 
indexes of the S-functions were retained, a method appropriate for the case in hand 
but still requiring the complete construction of all the lower-order plethysms. All the 
operations were carried out using appropriate commands in SCHUR. 

3. Enumeration of Weyl scalars 

The master object W for the enumeration of scalars arising from tensor polynomials 
in the Weyl tensor is of the same form as for (2.1) except for the replacement of 
{ k + 2 , 2 )  by [ k + 2 , 2 ]  where the square brackets [A] label irreducible representations 
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of the’full orthogonal group Od [9] and hence 
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m 

W -  1 (t2[Z2] + 17321 + f4[42]+. . .)@”’. (3.1) 
“9-1 

There will be a Weyl scalar for every occurrence of the Od identity representation 
[O] and hence in principle one need only count the number of scalars arising from 
(3.1). However, as with the Riemann scalars, there exists a minimal dimension for 
each scalar. In practice the set of scalars is constructed for a dimension d large enough 
to ensure that every irreducible represention [A] of Od arising in (3.1) at order n is 
standard, which is certainly the case for d 2 2n. The number of scalars associated with 
the minimal dimension m, at and above which the scalars are linearly independent, is 
determined by taking the set of irreducible representations from (3.1) and determining 
the number of scalars n ( m )  and n ( m +  1) for 0, and O,,, after application of the 
orthogonal group modification rules. The number n ( m +  1)- n ( m )  is then the number 
of linearly independent Weyl scalars that exist in dimension m and above, but not in 
dimension <m. The Weyl scalars were enumerated by first noting that in Od a scalar 
[O] (but not a pseudo-scalar [O]*) is only possible in the Kronecker product [A] x [p] 
if [A] = [ p ] .  Thus to count the number of scalars in [42] [Z2]0{5} it suffices to count 
the number of times [42] occurs in [2’]0{5}. These operations were all carried out 
with standard SCHUR commands. The only difficult terms were those associated with 
[Z2]0{7}. These were enumerated by first noting that if [a] and [ p ]  are two lists of 

Table 2. The count of the Weyl scalars of order 14. 

Class 4 5 6 

7’ 1 
752 0 1 
743 0 1 
732‘ 2 I 1 
6’ 2 2 1 1 
653 2 3 1 
64’ 2 2 1 
642’ 1 16 7 

- - 
- 
- 

63’ 2 3 21 IO 
624 2 7 12 
5’ 4 2 4 1 
52 22 7 18 I5 
5432 I5 91 70 
53’ 3 25 21 
532’ 4 92 161 
43 2 2 26 21 
4’3‘ 13 67 60 
4’2’ 13 90 179 
43‘2’ 23 385 114 
42’ 0 63 204 
34 2 8 113 246 
3‘24 I3 940 953 
27 3 20 107 

Totals 121 1313 2845 1989 753 I68 40 8 3 0 1 7347 
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Od irreducible representations then 
[ ( ~ ~ P ) / D l l [ ~ / D l ~ [ B / D l  (3.2) 

where D is the usual S-function series [9]. Thus to obtain the scalars in [2']0{n} write 

(3.3a) 

For each term in (3.3b) the two plethysms are constructed as two lists, each list is 
skewed with the D-series and the two resulting lists modified for the group Od of 
interest and the two lists compared for common terms to obtain the number of scalars 
for the term. The process is repeated for each term in succession to finally yield the 
total count of the Weyl scalars. This approach is more efficient than the direct approach 
since it avoids the need to form products oiiarge iists oi0.  irreduciiiie representations. 
Had one attempted to evaluate all the terms in [2']0{7} directly one would have been 
faced with enumerating over 250 000 000 irreducible representations of 0, to finally 
discover the 437 Weyl scalars associated with that plethysm. 

The complete list of Weyl scalars at order 14 are collected together in table 2 using 
the same notation as for table 1.  

4. Conclusion 

The scalars associated with the Riemann and Weyl tensors have been enumerated, and 
their minimal dimensions established, for the fourteenth order. The Riemann scalars 
are much more numerous that the Weyl scalars, which is no surprise; however, 
paradoxically the latter requires the enumeration of plethysms involving many more 
partitions. Thus whereas {32}0{4} involves 3131 terms the Od plethysm [32]0{4} 
involves 313 689 terms. As of yet there seems no way of permitting a direct enumeration 
that avoids gross overcounting. Unless a radically new procedure of enumerating 
invariants is discovered, even with improvements in computer memories and speed 
further progress is likely to be limited to only a very few higher orders. A more fruitful 
approach is likely to be the study of the stability properties of plethysms, a far from 
trivial subject, with the aim of achieving asymptotic formulae. Enough has been 
achieved to create testing points for such attempts. 
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